Résumé sur les variables aléatoires réelles

EN2D2 - Lycée Gustave Eiffel - Bordeaux Thierry Sageaux.

• Espérance et variance.

Cas discret
$$E(X) = \sum_{i \in I} x_i p(X = x_i)$$
 $E(X) = \int_{i \in I} x p(X = x_i)$ $E(X) = \int_{i \in I} x p(X = x_i)$ $E(X) = \int_{i \in I} x p(X = x_i)$ $E(X) = \int_{i \in I} x p(X = x_i)$

• Formule de König-Huygens

$$V(X) = E(X^2) - (E(X))^2$$

ullet Si X et Y sont des variables aléatoires admettant espérance et variance :

$$E(aX + bY) = aE(X) + bE(Y)$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$V(X + Y) = V(X) + V(Y) + 2 Cov(X,Y)$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

 \bullet Si X et Y sont **indépendantes**, alors

$$Cov(X, Y) = 0$$

$$E(XY) = E(X)E(Y)$$

$$V(X + Y) = V(X) + V(Y)$$

- ullet si X et Y sont **indépendantes** de lois respectives :
- i. $\mathcal{B}(n,p)$ et $\mathcal{B}(n',p)$, alors X+Y suit la loi $\mathcal{B}(n+n',p)$.
- ii. $\mathcal{P}(\lambda)$ et $\mathcal{P}(\lambda')$, alors X + Y suit la loi $\mathcal{P}(\lambda + \lambda')$.
- iii. $\mathcal{N}(m_1, \sigma_1^2)$ et $\mathcal{N}(m_2, \sigma_2^2)$, alors X + Y suit la loi $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.
- Approximations :
- i. Si $N \geq 10n$ alors $\mathcal{H}(N, n, p) \simeq \mathcal{B}(n, p)$.
- ii. Si $n \geq 30$ et $p \leq 0, 1$ alors $\mathcal{B}(n, p) \simeq \mathcal{P}(np)$.
- iii. Si $n \geq 30$, $np \geq 15$ et npq > 5, alors $\mathcal{B}(n,p) \simeq \mathcal{N}(np,npq)$. Attention dans ce cas à la correction de continuité.
- iv. Si $\lambda \geq 10$ alors $\mathcal{P}(\lambda) \simeq \mathcal{N}(\lambda, \lambda)$. Attention là encore à la correction de continuité.

EN2D2 Lycée Gustave Eiffel

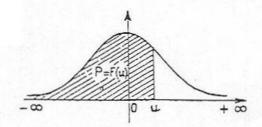
Lois discrètes finies	Notation	$X(\Omega)$	p(X=k)	E(X)	V(X)
Loi uniforme Tirage équiprobable d'un objet parmi n objets numérotés de 1 à n . La v.a.r. X est alors le numéro de l'objet tiré.	$X \hookrightarrow \mathcal{U}\left(\llbracket 1; n rbracket ight)$	$\llbracket 1;n rbracket$	$\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2 - 1}{12}$
Loi de Bernoulli Réalisation d'une expérience aléatoire n'ayant que deux issues : le succès avec une probabilité p et l'échec avec une probabilité $q=1-p$.	$X \hookrightarrow \mathcal{B}(p)$	{0,1}	p(X=1) = p $p(X=0) = q$	p	pq
Loi binomiale Réalisation de n épreuves identiques et indépendantes de Bernoulli de paramètre p . La v.a.r. X est le nombre de succès.	$X \hookrightarrow \mathcal{B}(n,p)$	$\llbracket 1;n rbracket$	$\binom{n}{k} p^k q^{n-k}$	np	npq
Loi hypergéométrique Tirage de n individus parmi N dont une proportion p sont de type A . La v.a.r. X est le nombre d'individus de type A tirés.	$X \hookrightarrow \mathcal{H}(N, n, p)$	$\subset [\![1;n]\!]$	$\frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}$	np	$npq\frac{N-n}{N-1}$

Lois discrètes infinies	Notation	$X(\Omega)$	p(X = k)	E(X)	V(X)
Loi géométrique sur \mathbb{N} Réalisation de n épreuves identiques et indépendantes de Bernoulli de paramètre p . La v.a.r. est le nombre d'échec avant le premier succès.	$X \hookrightarrow \mathcal{G}_{\mathbb{N}}(p)$	N	$q^k p$	$\frac{q}{p}$	$\frac{q}{p^2}$
Loi géométrique sur \mathbb{N}^* Idem : Réalisation de n épreuves identiques et indépendantes de Bernoulli de paramètre p . Ici, la v.a.r. est le nombre d'épreuves jusqu'au premier succès.	$X \hookrightarrow \mathcal{G}_{\mathbb{N}^*}(p)$	N*	$q^{k-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$
Loi de Pascal Idem, mais la v.a.r. X est le nombre d'épreuves jusqu'à obtenir r succès.	$X \hookrightarrow \mathcal{P}(r,p)$	$\llbracket n, +\infty \llbracket$	$\binom{k-1}{r-1}q^{k-r}p^r$	$\frac{r}{p}$	$\frac{rq}{p^2}$
Loi de Poisson Pas de modèle. Loi des petits nombres d'évènements.	$X \hookrightarrow \mathcal{P}(\lambda)$	N	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ

Lois continues	Notation	$X(\Omega)$	Densité $f(x) =$	E(X)	V(X)
Loi uniforme	$X \hookrightarrow \mathcal{U}([a,b])$	[a,b]	$\left\{ \begin{array}{l} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon.} \end{array} \right.$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Loi exponentielle	$X \hookrightarrow \mathcal{E}(\lambda)$ $(\lambda > 0)$	\mathbb{R}^*	$\int \lambda e^{-\lambda x} \text{si } x \ge 0$	$\frac{1}{2}$	$\frac{1}{100}$
Loi sans mémoire.	$(\lambda > 0)$		\bigcup 0 sinon.	λ	$\overline{\lambda^2}$
Loi normale centrée réduite ou loi de Gauss centrée réduite.	$X \hookrightarrow \mathcal{N}(0,1)$	\mathbb{R}	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	0	1
Loi normale ou loi de Gauss.	$X \hookrightarrow \mathcal{N}(m, \sigma)$ $(\sigma > 0)$	\mathbb{R}	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2
Loi gamma	$X \hookrightarrow \Gamma(b,\tau)$ $(b>0, \ \tau>0)$	\mathbb{R}^*	$\begin{cases} \frac{e^{\frac{-x}{b}}x^{\tau-1}}{\Gamma(\tau)b^{\tau}} & \text{si } x > 0\\ 0 & \text{sinon.} \end{cases}$	$b\tau$	$b^2\tau$

EN2D2 Lycée Gustave Eiffel

Fonction de Répartition de la loi normale Réduite (Probabilité de trouver une valeur inférieure à u)



u	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0;5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,535
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,575
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,614
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,651
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,687
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0.722
0,6	0,7257	0,7290	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,754
0,7	0,7580	0,7611	0,7642	0,7573	0,7704	0,7734	0,7764	0,7794	0,7823	0,785
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	D, 813
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,838
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,862
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,883
1,2	0,8849	0,8869	0,8888	0.8907	0,8925	0,8944	0,8962	0,8980	0.8997	0,901
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,917
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,931
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,944
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,954
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,963
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,970
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,976
2,0	0,9772	0,9779	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,981
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,985
2,2	0,9861-		0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,989
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,991
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,993
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,995
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,996
2.7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,997
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,998
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,998

Table pour les grandes valeurs de u

-	u	3,0	3, 1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
	F(u)	0,99865	0,99904	0,99931	0,99952	0,99966	0,99976	0,999841	0,999928	0,999968	0,999997

EN2D2 Lycée Gustave Eiffel

	Loi	le Pois	son P(m) : Pr	(X≼k)	
k \ m	8	9	10	11	12	13
0	0,0003	0,0001	0,0000	0,0000	0,0000	0,0000
1	0,0030	0,0012	0,0005	0,0002	0,0001	0,0000
2	0,0138	0,0062	0,0028	0,0012	0,0005	0,0002
3	0,0424	0,0212	0,0103	0,0049	0,0023	0,001
4	0,0996	0,0550	0,0293	0,0151	0,0076	0,003
5	0,1912	0,1157	0,0671	0,0375	0,0203	0,0107
6	0,3134	0,2068	0,1301	0,0786	0,0458	0,0259
7	0,4530	0,3239	0,2202	0,1432	0,0895	0,0540
8	0,5925	0,4557	0,3328	0,2320	0,1550	0,0998
9	0,7166	0,5874	0,4579	0,3405	0,2424	0,1658
10	0,8159	0,7060	0,5830	0,4599	0,3472	0,2517
11	0,8881	0,8030	0,6968	0,5793	0,4616	0,3532
12	0,9362	0,8758	0,7916	0,6887	0,5760	0,4631
13	0,9658	0,9261	0,8645	0,7813	0,6815	0,5730
14	0,9827	0,9585	0,9165	0,8540	0,7720	0,675
15	0,9918	0,9780	0,9513	0,9074	0,8444	0,7636
16	0,9963	0,9889	0,9730	0,9441	0,8987	0,8355
17	0,9984	0,9947	0,9857	0,9678	0,9370	0,8905
18	0,9993	0,9976	0,9928	0,9823	0,9626	0,9302
19	0,9997	0,9989	0,9965	0,9907	0,9787	0,9573
20	0,9999	0,9996	0,9984	0,9953	0,9884	0,9750
21	1,0000	0,9998	0,9993	0,9977	0,9939	0,9859
22	1,0000	0,9999	0,9997	0,9990	0,9970	0,9924
23	1,0000	1,0000	0,9999	0,9995	0,9985	0,9960
24	1,0000	1,0000	1,0000	0,9998	0,9993	0,9980
25	1,0000	1,0000	1,0000	0,9999	0,9997	0,9990
26	1,0000	1,0000	1,0000	1,0000	0,9999	0,9995
27	1,0000	1,0000	1,0000	1,0000	0,9999	0,9998

