V.A.R. discrètes finies

Résumé

Notions de base complètes sur les variables aléatoires discrètes finies avant d'attaquer les continues...

Table des matières

Ι	Généralités sur les variables aléatoires			
	Définition et premières propriétés			
	Couples de variables aléatoires			
Π	riables composées			
H	is usuelles			
	1 Loi uniforme : $\mathcal{U}(n)$			
	2 Loi de Bernoulli : $\mathring{\mathcal{B}}(p)$			
	3 Loi binomiale : $\mathcal{B}(n,p)$			
	4 Loi Multinomiale			
	5 Loi hypergéométrique : $\mathcal{H}(N,n,p)$			

Dans tout ce chapitre, (Ω, \mathcal{T}) est un espace probabilisable.

I Généralités sur les variables aléatoires

I.1 Définition et premières propriétés

Définition 4.1 On appelle variable aléatoire discrète X toute application définie sur Ω à valeurs dans \mathbb{R} . L'ensemble image $X(\Omega) = \{x_i, i \in I\}$ est l'ensemble des valeurs prises par X. Cet ensemble est dénombrable (i.e. $I = \mathbb{N}$) ou fini et on dit dans ce cas que X est une variable aléatoire discrète finie.

$$X: \Omega \longrightarrow \mathbb{R}$$
 $\omega \longmapsto x$

Notation: $(X = x) = X^{-1}(x) = \{ \omega \in \Omega / X(\omega) = x \}.$

Définition 4.2 On appelle loi de probabilité de X l'application :

$$\begin{array}{ccc} p: & X(\Omega) & \longrightarrow & [0,1] \\ & x_i & \longmapsto & p(X=x_i)=p_i \end{array}$$

On la définit donc via les probabilités des évènements élémentaires.

Un cas particulier de variable aléatoire est donné par la définition suivante :

Définition 4.3 Soit (Ω, \mathcal{T}, p) un espace probabilisé. Soit $A \in \mathcal{T}$ un événement. On peut alors définir la variable aléatoire indicatrice de A par la variable aléatoire X_A (attention, il n'existe pas de notation standardisée) qui vaut 1 si A est réalisé et 0 sinon.

Ainsi, $p(X_A = 1) = p(A)$ et $p(X_A = 0) = 1 - p(A)$.

Définition 4.4 On appelle espérance mathématique de X le réel :

$$E(X) = \sum_{i \in I} x_i p_i$$

Définition 4.5 On appelle variance de X le réel

$$V(X) = \sum_{i \in I} (x_i - E(X))^2 p_i$$

On appelle écart type de X le réel

$$\sigma(X) = \sqrt{V(X)}$$

En étendant les notations à la variable aléatoire X^2 , on a $E(X^2) = \sum_{i \in I} x_i^2 p_i$ et plus généralement,

Définition 4.6 Si $r \in \mathbb{N}$ et X est une variable aléatoire, on appelle moment d'ordre r de X, noté $m_r(X)$, l'espérance de la variable X^r . Ainsi,

$$m_r(X) = \sum_{i=1}^n x_i^r p(X = x_i) = E(X^r).$$

On utilise aussi parfois le moment centré d'ordre r, noté $\mu_r(X)$ qui est l'expérience mathématique de la variable aléatoire $(X - E(X))^r$:

$$\mu_r(X) = \sum_{i=1}^n (x_i - E(X))^r p(X = x_i) = E[(X - E(X))^r].$$

Remarque: Le moment d'ordre 1 est donc l'espérance et le moment centré d'ordre 2 est la variance.

Théorème 4.7 (Formule de König-Huygens)

$$V(X) = E(X^2) - (E(X))^2$$

<u>Procédé mnémotechnique</u>: Un moyen simple de s'en souvenir et de le dire à haute voix en français : "La moyenne des carrés moins le carré de la moyenne". C'est joli, ça sonne bien, en tout cas beaucoup mieux que le contraire : "Le carré de la moyenne moins la moyenne des carrés" dans laquelle l'allitération des trois "m" sonne mal.

Définition 4.8 On appelle fonction de répartition de X l'application

$$F: \mathbb{R} \longrightarrow [0,1]$$
$$x \longmapsto p(X \le x)$$

Remarques: • F est croissante sur \mathbb{R}

- $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$. $F(x) = \sum_{x_i \le x} p_i$ $P(X = x_i) = F(x_i) F(x_{i-1})$.

Exercice 1.

- 1) Soit X une variable aléatoire à valeurs dans [1, n]. Montrer que $E(X) = \sum_{k=1}^{n} p(X \ge k)$.
- 2) On tire deux jetons simultanément dans un sac contenant 10 jetons numérotés de 1 à 10. On appelle X la variable aléatoire désignant le minimum des numéros tirés. Calculer l'espérance de X.

Couples de variables aléatoires

Exercice 2.

Soit (X,Y) un couple de variables aléatoires dont la loi est définie par le tableau suivant :

Y, X	0	1
0	p	$\frac{1}{2} - p$
1	$\frac{1}{3}-p$	$\frac{1}{6} + p$

- 1) A quel intervalle doit appartenir p pour que ces données soient acceptables?
- 2) Déterminer E(X), E(Y), V(X), V(Y).
- 3) Déterminer p pour que X et Y soient indépendantes.

Remarque: La loi de probabilité d'un couple (X,Y) s'appelle loi conjointe de X et de Y alors que les variables aléatoires X et Y s'appellent les **lois marginales**.

Exercice 3.

Montrer que si deux variables aléatoires X et Y sont indépendantes, alors E(XY) = E(X)E(Y).

Définition 4.9 On appelle covariance de \overline{X} et \overline{Y} le réel

$$\operatorname{Cov}(X,Y) = E(XY) - E(X) \times E(Y)$$

Nota Bene : Cov(X, X) = V(X).

Remarque: La covariance permet d'évaluer le sens de variation de deux variables aléatoires. Si les deux variables sont indépendantes, alors la covariance est nulle. (La réciproque est fausse).

Exercice 4.

Montrer que $V(X + Y) = V(X) + V(Y) + 2 \operatorname{Cov}(X, Y)$.

Définition 4.10 Soient X et Y deux variables aléatoires d'écart type non nul.

On appelle coefficient de corrélation linéaire des deux variables X et Y, le nombre réel

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

Exercice 5.

Montrer que $|\rho(X,Y)| \leq 1$.

Variables composées

Soit X une variable aléatoire et ϕ une fonction de \mathbb{R} dans \mathbb{R} . Alors $\phi(X) = \phi \circ X$ est aussi une variable aléatoire que l'on note dans la suite $Y = \phi(X)$. Si $X(\Omega) = \{x_1, x_2, \dots, x_n\}$, alors

$$Y(\Omega) = \phi(X)(\Omega) = \{\phi(x_1), \dots, \phi(x_n)\} = \{y_1, \dots, y_m\},\$$

cet ensemble étant de cardinal inférieur ou égal à n (cela dépend de l'injectivité de ϕ). On note $I_i = \{i \in \{i \in \{i\}\}\}$ [1, n], $\phi(x_i) = y_i$, ce qui veut dire que l'on découpe [1, n] en sous-ensembles sur lequel ϕ est constante. En utilisant la réunion disjointe qui en découle, on trouve

$$p(Y = y_j) = \sum_{i \in I_j} p(X = x_i).$$

Proposition 4.11 (Théorème de transfert) Soit X une variable aléatoire et ϕ une fonction de \mathbb{R} dans \mathbb{R} . On a

$$E(\phi(X)) = \sum_{i=1}^{n} \phi(x_i) p(X = x_i).$$

Exercice 6.

Démontrer cette formule.

En particulier, on a

Corollaire 4.12 Avec les conditions précédentes, si ϕ est affine du type $\phi(x) = ax + b$, alors

$$E(aX + b) = aE(X) + b,$$
 $V(aX + b) = a^2V(X)$ et $\sigma(aX + b) = |a|\sigma(X).$

Exercice 7.

Faire la démonstration.

Définition 4.13 Soit X une variable aléatoire discrète (i.e. $X(\Omega) \subset \mathbb{N}$). On définit le fonction généra $trice G_X par :$

$$G_X(t) = \sum_{k \in \mathbb{N}} t^k p(X = k)$$

Si la variable aléatoire est discrète finie (i.e. $\operatorname{card}(X(\Omega)) = n$), la fonction génératrice est un polynôme. Sinon, il s'agit d'une série.

Exercice 8.

Si X est une variable aléatoire et si $X(\Omega) = [0, n]$, on considère G_X la fonction génératrice associée à X.

- 1) Montrer que $\forall i \in [0, n], \ p(X = i) = \frac{G_X^{(i)}(0)}{i!}.$
- 2) a) Montrer que $E(X) = G'_X(1)$. b) Montrer que $V(X) = G''_X(1) + G'_X(1) (G'_X(1))^2$. 3) a) Quel théorème permet de dire que $G_X(t) = E(t^X)$.
- b) Soient $p \geq 2$ un entier et (X_i) une famille de p variables aléatoires mutuellement indépendantes à valeurs dans [0, n]. Montrer que $G_{\sum_{i=1}^{n} X_i} = \prod_{i=1}^{p} G_{X_i}$.

III Lois usuelles

III.1 Loi uniforme : U(n)

C'est le cas d'un tirage équiprobable parmi n objets, X étant le numéro de l'objet tiré. En supposant que $X(\Omega)=\{1,...n\}$ et $p(X=k)=\frac{1}{n}$ pour tout $k\in\{1,...,n\}$. On a alors :

$$E(X) = \frac{n+1}{2} V(X) = \frac{n^2 - 1}{12}$$

III.2 Loi de Bernoulli : $\mathcal{B}(p)$

Il s'agit du cas très simple où l'expérience aléatoire n'a que deux issues possibles appelées succès (avec une probabilité p) et échec (avec une probabilité q = 1 - p).

On a alors $X(\Omega) = \{0, 1\}$ et

$$E(X) = p$$
$$V(X) = pq$$

III.3 Loi binomiale : $\mathcal{B}(n,p)$

Ici, on réalise n épreuves aléatoires **identiques et indépendantes** de Bernoulli. On a alors un arbre de probabilité de valence 2 (i.e. deux branches de plus à chaque ramification). En appelant X la variable aléatoire qui recense le nombre de succès, on a $X(\Omega) = \{0, 1, ..., n\}$ et on a la

Proposition 4.14 Avec les mêmes hypothèses

$$p(X = k) = \binom{n}{k} p^k q^{n-k}$$

$$E(X) = np$$
$$V(X) = npq$$

Exercice 9.

Soit n, a et b trois entiers naturels non nuls. On dispose de n sacs contenant chacun a jetons numérotés +1 et b jetons numérotés -1. On tire au hasard un jeton dans chaque sac. Soit T la somme des n valeurs relevées sur les jetons tirés.

- 1) Donner la loi de la variable aléatoire T.
- 2) Calculer son espérance mathématique et sa variance.

Exercice 10.

La somme de deux variables aléatoires indépendantes X_1 et X_2 suivant deux lois binomiales $\mathcal{B}(n_1, p)$ et $\mathcal{B}(n_2, p)$ suit une loi binomiale $\mathcal{B}(n_1 + n_2, p)$.

III.4 Loi Multinomiale.

Si l'on reprend l'exercice classique de Babar :

Exercice 11.

Un éléphant pioche cinq lettres avec remise dans un sac constitué des lettres B, A et R. Quelle est la probabilité que l'on puisse écrire "BABAR" avec les lettres tirées?

On peut partir sur un dénombrement classique d'un tirage avec remise et avec ordre. On a alors le cardinal de l'univers qui vaut : card $\Omega = 3^5$.

Le nombre de tirages favorables est le nombre de codes à cinq lettres écrits avec trois lettres, dont deux fois le B, deux fois le A et une seule fois le R. Il suffit donc de choisir les places, soit

$$\binom{5}{2} \times \binom{3}{2} \times \binom{1}{1} = \frac{5!}{2!3!} \times \frac{\cancel{3}!}{2!\cancel{1}!} \frac{\cancel{1}!}{1!0!} = \frac{5!}{2!2!1!} = 30$$

Reprenons le même problème mais avec le point de vue algébrique : Si l'on veut développer le trinôme du cinquième degré $(b+a+r)^5$, on va obtenir une somme de monômes tous de degré global en a, b, r égal à 5. En effet, l'écriture devant être homogène, on doit avoir

$$(b+a+r)^5 = \sum_{\alpha_1+\alpha_2+\alpha_3=5} \mathrm{Coeff} b^{\alpha_1} a^{\alpha_2} r^{\alpha_3}$$

On peut essayer de déterminer les coefficients. Au hasard, pour $b^2a^2r^1$, on a le développement suivant :

$$(b+a+r)^5 = (b+a+r) \times (b+a+r) \times (b+a+r) \times (b+a+r) \times (b+a+r) = \dots + 30b^2a^2r^1 + \dots$$

à vous de colorier les branches manquantes... et on retrouve bien notre nombre 30 trouvé précédemment. En effet, on a bien cherché le nombre de mots que l'on peut écrire avec deux B, deux A et un R, autrement dit, le nombre de fois où on a écrit b^2a^2r dans le développement.

On peut évidemment étendre cette formule pour obtenir la formule du coefficient multinômial : $\frac{n!}{\alpha_1!\alpha_2!\dots\alpha_k!}$ lorsque l'on développe $(a_1+\dots+a_k)^n$. Ainsi, on obtient la superbe formule :

$$(a_1 + \dots + a_k)^n = \sum_{\alpha_1 + \dots + \alpha_k = n} \frac{n!}{\alpha_1! \alpha_2! \dots \alpha_k!} a_1^{\alpha_1} \dots a_k^{\alpha_k}$$

qui généralise la formule du binôme de Newton.

Ceci nous permet de définir une nouvelle loi (très peu utilisée car on la retrouve par dénombrement à chaque fois sans problème), la loi multinomiale qui généralise la loi binomiale dan sle cas où l'expérience aléatoire a plus de deux issues possibles (trois dans notre exemple).

III.5 Loi hypergéométrique : $\mathcal{H}(N, n, p)$

Dans une urne contenant N boules dont N_1 blanches et N_2 noires, on tire au hasard $n \leq N$ boules, sans remise. On appelle $p = \frac{N_1}{N}$ la proportion de boules blanches dans l'urne.

Soit X la variable aléatoire du nombre de boules blanches. Ses valeurs sont comprises entre 0 et n. En effet, la valeur maximum de X est n, sauf si $N_1 < n$, auquel cas, c'est N_1 . D'autre part, la valeur minimum de X est 0, sauf s'il n'y a pas assez de boules noires, i.e. si $N_2 < n$, auquel cas le minimum est $n - N_2$. Ainsi, on a $X(\Omega) = [\max\{0, n - N_2\}, \min\{n, N_1\}]$.

L'univers est un ensemble à $\binom{N}{n}$ éléments et pour tout $k \in X(\Omega)$, on prend k boules blanches parmi N_1 et n-k parmi les N_2 boules noires. Ainsi, la probabilité de l'évènement (X=k) est :

Proposition 4.15 Si X suit une loi hypergéométrique

$$p(X = k) = \frac{\binom{N_1}{k} \binom{N_2}{n-k}}{\binom{N}{n}}$$

Remarque: Avec la notation $\binom{p}{l} = 0$ si p < l, on peut écrire :

$$1 = \sum_{k=0}^{n} p(X = k) = \sum_{k=0}^{n} \frac{\binom{N_1}{k} \binom{N_2}{n-k}}{\binom{N}{n}}$$

donc

$$\sum_{k=0}^{n} \binom{N_1}{k} \binom{N_2}{n-k} = \binom{N}{n}$$

On retrouve l'Identité de Vandermonde.

On a alors:

Proposition 4.16 Avec les mêmes hypothèses,

$$E(X) = np$$

$$V(X) = npq\left(\frac{N-n}{N-1}\right)$$

Remarque: Le nombre $\left(\frac{N-n}{N-1}\right)$ est appelé **coefficient d'exhaustivité**.

On remarque que si N est grand $(N \ge 50)$ et $\frac{n}{N}$ petit $(\frac{n}{N} < 0, 1)$, alors $\frac{N-m}{N-1} \simeq 1$, donc $\mathcal{H}(N, n, p) \simeq \mathcal{B}(n, p)$.

<u>Démonstration</u>: On décide de choisir les arrangements car les calculs vont être plus faciles qu'avec les combinaisons.

Notons

 $X_i = \left\{ \begin{array}{ll} 1 & \text{si la i^e case comporte un \'el\'ement du type recherch\'e (boule blanche pour notre exemple)} \\ & \text{sinon.} \end{array} \right.$

Ainsi, $X_i \sim \mathcal{B}\left(\frac{n_1}{N}\right)$ i.e. $X_i \sim \mathcal{B}(p)$

On a alors $X = \sum_{i=1}^{n} X_i$ et

$$E(X) = \sum_{i=1}^{n} E(X_i) = np = \frac{nn_1}{N}$$

$$V(X) = \sum_{i=1}^{n} V(X_i) + 2 \sum_{1 \le i \le j \le n} \text{Cov}(X_i, X_j).$$

Or

$$\begin{split} E(X_i \times X_j) &= 1 \times P(X_i = X_j = 1) + 0 \times P(X_i = 0 \text{ ou } X_j = 0) \\ &= P(X_i = X_j = 1) \\ &= \frac{A_{n_1}^2 A_{N-2}^{n-2}}{A_N^n} \\ &= \frac{n_1(n_1 - 1)}{N(N - 1)}. \end{split}$$

Donc $Cov(X_i, X_j) = \frac{n_1(n_1 - 1)}{N(N - 1)} - \left(\frac{n_1}{N}\right)^2 = \frac{-n_1 n_2}{N^2(N - 1)}$ et

$$V(X) = npq + 2\binom{n}{2} \left(\frac{n_1}{N}\right)$$
$$= npq - n(n-1)\frac{pq}{N-1}$$
$$= npq\left(\frac{N-n}{N-1}\right)$$

Exercice 12.

Je joue au poker menteur. Je distribue cinq cartes à mon adversaire qui annonce aussitôt : "Brelan de roi!" Quel est la probabilité qu'il mente?

- 1) S'il n'y a pas de joker dans le jeu (32 cartes).
- 2) S'il y a un joker dans le jeu (32 + 1 cartes et possibilité de mettre le joker dans le brelan).

