1. $4x^2-4x+1=0$	6. $3x^2+2\sqrt{3}x+1<0$	11. $ 2-6x >5$	
2. $(2x-1)^2 = -3$	7. $5x+1>x^2+3x+2$	12. 1-x < -1	
3. $(2x+1)(2-x)=4x^2-1$	8. $ x^2-25 =0$	$13. \frac{ 6x-3 }{ 6x-3 } > 2$	
4. 2-3 <i>x</i> <0	9. $ x-7 =3$	$\frac{13.}{ 2-x }$	
5. $(2x+1)(1-3x) \ge 0$	10. $ x-9 = 8-x $		

1. $(2x-1)^2=0$, d'où $2x-1=0$ et $S=\{\frac{1}{2}\}$.	6. $(\sqrt{3}x+1)^2 < 0$ un carré étant toujours positif, il n'y a pas de solution. $S=\emptyset$	
2. Un carré étant toujours positif, S=∅.	$7. \ 0 > x^2 - 2x + 1 \Leftrightarrow 0 > (x - 1)^2 $ Un carré étant	
3. $(2x+1)(2-x)=4x^2-1 \Leftrightarrow (2x+1)(2-x)=(2x-1)(2x+1)$	toujours positif, il n'y a pas de solution S=Ø.	
$\Leftrightarrow (2x+1)(2-x)-(2x+1)(2x-1)=0$	8. $ (x-5)(x+5) =0 \Leftrightarrow (x-5)(x+5)=0$	
$\Leftrightarrow (2x+1)((2-x)-(2x-1))=0$	$ \cos y = 0 \Leftrightarrow y = 0 \text{ (propriété 2.I)}$	
\Leftrightarrow $(2x+1)(3-3x)=0$ d'où	Donc S={-5;5}.	
$S = \{\frac{-1}{2}; 1\}.$	9. Si $x-7 \ge 0$ alors $ x-7 = x-7 = 3 \iff x = 10$.	
3-12,13.	Si $x-7 \le 0$ alors $ x-7 = -(x-7) = 3 \iff x = 4$.	
	Donc S={4;10}.	
$4. x > \frac{2}{3} \text{ donc S} =]\frac{2}{3}; +\infty[.$	10. $ x-9 = 8-x \Leftrightarrow x-9 = 8-x \text{ ou } x-9 = -(8-x)$	
$3^{4.2}$ done $3-1$ $3^{4.4}$.	\Leftrightarrow 2x=17 ou pas de solution.	
5. Tableau de signe :	Donc $S = \{\frac{17}{2}\}$ (propriété 2.I)	
$x \qquad -\infty \qquad \frac{-1}{2} \qquad \frac{1}{3} \qquad +\infty$	11. Si 2-6 $x \ge 0$ alors $ 2-6x =2-6x>5 \Leftrightarrow x < \frac{-1}{2}$	
2x+1 - 0 + +	Si 2-6 $x \le 0$ alors $ 2-6x =6x-2>5 \Leftrightarrow x>\frac{7}{6}$	
1-3x + 0 -	D'où S=]- ∞ ; $\frac{-1}{2}$ [4] $\frac{7}{6}$; + ∞ [.	
(2x+1)(1-3x) $ 0$ $+$ 0 $-$	2 0	
	12. Une valeur absolue étant toujours	
D'où S= $[-\frac{1}{2}; \frac{1}{3}]$.	positive, il n'y a pas de solution. Ainsi, $S=\emptyset$.	

13. On a le tableau de valeur suivant qui nous amène à considérer trois intervalles :

x	-∞	$\frac{1}{2}$ 2	2 +∞
6 <i>x</i> -3	3-6 <i>x</i>	0 6 <i>x</i> -3	6 <i>x</i> -3
2-x	2- <i>x</i>	2- <i>x</i> (x-2
$\frac{ 6x-3 }{ 2-x }$	$\frac{3-6x}{2-x}$	$0 \qquad \frac{6x-3}{2-x}$	$\frac{6x-3}{x-2}$

a) Si
$$x \le \frac{1}{2}$$
 alors on doit résoudre $\frac{3-6x}{2-x} > 2 \Leftrightarrow 3-6x > 2(2-x) \Leftrightarrow x < \frac{-1}{4}$ donc $S_a =]-\infty$; $\frac{-1}{4}[$.

Il est à noter que nous avons multiplier par (2-x) une inéquation sans en changer le sens car ce terme est strictement positif.

b) Si
$$\frac{1}{2} \le x < 2$$
 alors on a $\frac{6x-3}{2-x} > 2 \Leftrightarrow 6x-3 > 2(2-x) \Leftrightarrow x > \frac{7}{8}$ donc $S_b = \frac{7}{8}$; 2[.

c) Si
$$2 < x$$
 on doit résoudre $\frac{6x-3}{x-2} > 2 \Leftrightarrow 6x-3 > 2(x-2) \Leftrightarrow x > \frac{-1}{4}$ et on a $S_c =]2; +\infty[$

En conclusion, S=
$$S_a 4 S_b 4 S_c =]-\infty ; \frac{-1}{4} [\ 4 \] \frac{7}{8} ; 2[4 \]2 ; +\infty[$$